
Learnings from encoding Kawi
Norbert Lindenberg

󱼾󱼥󱼴󱼾󱼨 󱼂󱼡󱽂󱼭󱼶 󱼥󱽂󱼣󱽀 󱼾󱼥󱽂󱼨󱼔󱽁󱽄

© Norbert Lindenberg 2021

Kawi proposal authors

2

Aditya Bayu Perdana

󱼄󱼣󱼶 󱼡󱽂󱼫󱼨󱼫󱼸󱼦󱽀 󱼣 󱼂󱽂󱼣󱼥󱽄

Ilham Nurwansah 

󱼆󱼭󱽂󱼲󱼪󱽂󱼥 󱼸󱼮 󱼂󱽂󱼮󱼥󱽂󱼱󱼃󱽄

Agenda

• Kawi

• Encoding characters

• Encoding clusters

• Test implementation with font and keyboard

• Summary

3

Kawi

• Historic script of Java, Sumatra, Malay
peninsula, Bali, Philippines

• Used to write Old Javanese, Sanskrit, Old
Malay, Old Balinese, Old Sundanese

• Used 8th to 16th century

• Derived from Brahmi via Pallava

4

Kawi

5

Quadratic KawiEarly Kawi

Late Kawi ‘Buda’ Kawi

Kawi: One script?

• Character shapes vary widely over history

• But:

• No significant structural changes

• Shapes can be handled by fonts

→Encode as single script

6

B. Consonant Letters

 TVIT32 OD 13695 OD 3871 OD 741a MSS Jav 106 KERN E29 various

KA ꦏ

KHA ꦑ

 *

GA ꦒ

GHA ꦓ

NGA ꦔ

 TVIT32 OD 13695 OD 3871 OD 741a MSS Jav 106 KERN E29 various

CA ꦕ

 *

CHA ꦖ

 *

JA ꦗ

JHA ꦙ

 *

NYA ꦚ

 TVIT32 OD 13695 OD 3871 OD 741a MSS Jav 106 KERN E29 various

TTA ꦛ

TTHA ꦜ

 *

DDA ꦝ

Kawi as Brahmic script
• Consonants with inherent vowel

• Dependent vowel signs override inherent
vowel; attach on any side of consonant

• Virama sign suppresses inherent vowel

• Conjunct forms of consonants suppress
inherent vowel of base consonant

• Repha sign for cluster-initial r-

7

Kawi as Brahmic script

• Kawi is 64th Brahmic script in Unicode

• Could there be an automated process for
Unicoding Brahmic scripts?

• Review of key decisions in encoding Kawi,
and see what can be learned from them

8

Encoding characters

User-level characters

• Significant research by Bayu, Ilham, and
collaborators

• Over 50 inscriptions and manuscripts
evaluated

• Documentation of characters and their
shapes

10

User-level characters

• Sumberwatu gold plate (Yogyakarta)

• Contains all 33 Kawi consonant letters

• Some previously known only in subscript form

11

30

ꦄꦄꦴ · ꦆꦇ · ꦈ ꦈꦴ · ꦉꦉꦴ · ꦊꦋ · ꦌꦍ

ꦎꦎ᭡ · ꦄ ꦄ · ꦏꦑꦒꦓꦔ · ꦕꦖꦗꦙꦚ · ꦛꦜꦝꦞꦟ

ꦠꦡꦢꦣꦤ · ꦥꦦꦧꦨꦩ · ꦪꦫꦭꦮ · ꦯꦰꦱꦲ
figure 37. Tracing of Desa Jeruk Gold Plate discovered in Klaten, Yogyakarta in March 1888. The inscription contains a mantra

made with the complete Kawi sequence of independent vowel and consonant letters in the Brahmic order. Tracing was published in
Tijdschrift voor Indische Taal-Land- en Volkenkunde deel XXXII (1889), p. 455. Notice that this abecedarium lists TTA, DDA, and

DDHA but does not differentiate their glyphs.

ꦏꦑꦒꦓꦔꦕꦖꦗ
ꦙꦚꦛꦜꦝꦞꦟ
ꦠꦡꦢꦣꦤꦥꦦꦧꦨ
ꦩꦪꦫꦭꦮꦯꦰꦱꦲ

figure 38. Sumberwatu Gold Plate discovered in Sleman, Yogyakarta (now kept by BPCP DIY, item BG.911) contains the complete
33 Kawi consonant letters set in the Brahmic order, written twice as a mantra.

figure 39. Kawi transcription in a modern Javanese manuscript (British Library Add MS 12321), from the collection of John
Crawford obtained during his official residence in Java, circa 1811-1815 (Documentation by Ben Mitchell). During this period, the

Kawi script has been displaced from active use, and this sample is a copying attempt from an unidentified inscription.

Virama
• Before computers: Visible mark to suppress

inherent vowel (Kawi: ◌󱽁)

• Unicode: Also used to form conjuncts (◌󱽂, ◌󱽂, 󱽂◌)

• Three kinds of viramas

• Visible mark – Pure_Killer

• Invisible conjunct former – Invisible_Stacker

• Shape-shifting depending on context – Virama

12

Virama

• Shape-shifter: Font is in control

• Useful in scripts with optional conjunct ligatures
(Devanagari)

• Users can use ZWNJ and (sometimes) ZWJ to
influence shape

• But: ZWNJ, ZWJ are hard to work with

13

Virama

• Visible mark + invisible conjunct former

• User is in control (important for scholars!)

• ZWJ and ZWNJ not needed

• Sufficient for script with fixed set of conjunct
forms

→Chosen for Kawi: ◌󱽁, ◌󱽂

14

Repha

• Mark representing cluster-initial r-, often
above-base – Kawi: ◌ 󱼂

• Unicode has 14 ways to represent repha

• Many use ZWJ to distinguish repha from nominal
form of initial r- or from eyelash ra

• Most encode repha as first part of cluster, some
don’t

15

Repha in Kawi

• Cluster-initial r- usually shows as repha ◌ 󱼂, but
occasionally as nominal ra glyph 󱼬

→ Encode repha separately to avoid need for ZWJ

• Repha sign usually means repha; rarely final -r

• Opposite of Balinese, Javanese, where cognates of
Kawi repha usually mean final -r, rarely repha

→ Encode repha before base consonant

16

Multi-part characters
• Kawi has several independent and

dependent vowels that visually consist of
multiple parts

• 󱼄󱽀 󱼴 letter euu ↔︎ 󱼄 letter a, ◌󱽀 sign eu, ◌󱼴 sign aa

• 󱼾◌󱼴 sign o ↔︎ 󱼾◌ sign e, ◌󱼴 sign aa

17

Multi-part characters
• Unicode has 3 ways to handle multi-part

characters

• Encode multi-part characters atomically, with
canonical decomposition – e.g. Balinese

• Encode multi-part characters atomically; prohibit
representation as sequence – e.g. Devanagari (“do
not use”); Khmer (max. 1 vowel)

• Do not encode multi-part characters; use sequence
of components instead – e.g. Javanese

18

Multi-part characters
in Kawi

• Components of multi-part characters in
Kawi always also are vowels by themselves

• Duplicate encoding with canonical
decomposition has no advantage

• “Do not use” lists or maximum number of
vowels complicate implementation

→ Encode as sequences of components

19

Multi-part characters
in Kawi

• Some multi-part characters have visually
distinct variants that aren’t multi-part

• 󱼆󱼴 letter ii ↔︎ 󱼆 letter i, ◌󱼴 sign aa

• 󱼇 letter ii ↮ 󱼆 letter i, ◌󱼴 sign aa

→Encode visually distinct variants separately

20

Encoding clusters

Clusters → logical order

• Clusters in Brahmic scripts are two-
dimensional; code point sequences are
linear

• Multiple encodings for strings that user can’t
distinguish lead to problems in search and
to spoofing

• Need to define correct code point sequences

22

Logical order
• Order in which text is stored in memory

• Need not match typing order – keyboards
can reorder to match user expectations

• May be based on visual order or phonetic
order

23

Visual order
• Thai, Lao + 2; most non-Brahmic scripts

• Encode spacing characters in writing direction

• Encode interacting nonspacing marks from
base outwards

• Equivalence between sequences of non-
interacting nonspacing marks

• “Interacting” ↔︎ same combining class

24

→ 󱼱󱽂󱼡󱽂󱼬󱽀 󱼴 →

󱼱 ◌󱽀 ◌󱽂󱼡 ◌󱽂󱼬 󱼴

󱼱 ◌󱽂󱼡 ◌󱽀 ◌󱽂󱼬 󱼴

󱼱 ◌󱽂󱼡 ◌󱽂󱼬 ◌󱽀 󱼴

Visual order

25

Visual order

• Problems for Brahmic scripts

• Combining class can’t be defined for marks
encoded as virama-consonant sequences

• Combining class for marks can’t be corrected
when minority languages use them differently or
mistakes were made

26

→ 󱼱󱽂󱼡󱽂 , 󱽂󱼱 →

󱼱 ◌󱽂󱼡 ◌󱽂 , 󱽂 󱽂󱼬 󱼱

Visual order

27

Visual order

• Problems for Brahmic scripts

• Spacing/nonspacing contextual forms have to be
encoded separately

• Characters don’t appear in order needed for
sorting

28

Phonetic order

• Most Brahmic scripts

• Encoding order is primarily phonetic order;
secondarily position or other criteria

29

Phonetic order

30

󱼱󱽂󱼡󱽂󱼬󱽀 󱼴

󱼱 ◌󱽂 ◌󱽂󱼬 ◌󱽀 󱼴

Phonetic order

31

󱼱󱽂󱼡󱽂 , 󱽂󱼱

󱼱 ◌󱽂 󱽂◌󱽂󱼬 , 󱼱 󱽂◌

Phonetic order

• Problems:

• Incompatible with equivalences defined through
combining classes → set CCC=0 (except virama)

• Some characters aren’t phonetic → need to
resolve where they fit in

• Unicode doesn’t do that → compatibility issues

32

Universal Shaping
Engine

• OpenType shaping engine for the rest of us

• Defines generic cluster model for Brahmic
scripts based on Unicode data:

• General category

• Indic syllabic category

• Indic positional category

33

Kawi cluster model

• Multiple positions for repha considered
because of use as final -r

→Encode at start of cluster, even for final -r

• After defining Unicode data for Kawi,
derived USE cluster model worked fine

→Kawi adopts cluster model provided by USE

34

35

Consonant_Preceding_Repha?

(Consonant | Vowel_Independent | Number |
Consonant_Placeholder)

(Invisible_Stacker (Consonant | Vowel_Independent |
Number))*

Vowel_Dependent-Left* Vowel_Dependent-Top*
Vowel_Dependent-Bottom* (Vowel_Dependent-Right
| Pure_Killer-Right)*

Bindu-Top*

Visarga-Right*

36

[◌ 󱼂]?

[󱼒 󱼓 󱼔 󱼕 󱼖 󱼗 󱼘 󱼙 󱼚 󱼛 󱼜 󱼝 󱼞 󱼟 󱼠 󱼡 󱼢 󱼣 󱼤 󱼥 󱼦 󱼧 󱼨 󱼩 󱼪
󱼫 󱼬 󱼭 󱼮 󱼯 󱼰 󱼱 󱼲 󱼳 󱼄 󱼅 󱼆 󱼇 󱼈 󱼉 󱼊 󱼋 󱼌 󱼍 󱼎 󱼏 󱼐 󱽐 󱽑 󱽒 󱽓
󱽔 󱽕 󱽖 󱽗 󱽘 󱽙 ◌]

[◌󱽂󱼒 ◌󱽂󱼓 ◌󱽂󱼔 ◌󱽂󱼕 ◌󱽂󱼖 ◌󱽂󱼗 ◌󱽂󱼘 ◌󱽂󱼙 ◌󱽂󱼚 ◌󱽂󱼛 ◌󱽂󱼜 ◌󱽂󱼝 ◌󱽂󱼞 ◌󱽂󱼟 ◌󱽂󱼠 ◌󱽂󱼡 ◌󱽂󱼢 ◌󱽂󱼣 ◌󱽂󱼤 ◌󱽂󱼥 ◌󱽂󱼦 ◌󱽂󱼧 ◌󱽂󱼨
◌󱽂󱼩 ◌󱽂󱼪 ◌󱽂󱼫 󱽂◌󱽂󱼬 ◌󱽂󱼭 ◌󱽂󱼮 ◌󱽂󱼯 ◌󱽂󱼰 ◌󱽂󱼱 ◌󱽂󱼲 ◌󱽂󱼊 ◌󱽂󱼌]*

[󱼾◌ 󱼿◌]* [◌󱼶 ◌󱼷 ◌󱽀]* [◌󱼸 ◌󱼹 ◌󱼺]* [◌󱼴 ◌󱼵 ◌󱽁]*

[◌󱼀 ◌ 󱼁]*

[◌󱼃]*

Kawi cluster examples

• 󱼾󱽂󱼱󱽂󱼬󱼴: 󱼱 󱽂◌󱽂󱼬 󱼾◌ ◌󱼴 (nisroma – hairless)

• 󱼾󱼱󱽂󱼡󱽂󱼬󱼴: 󱼱 ◌󱽂󱼡 󱽂◌󱽂󱼬 󱼾◌ ◌󱼴 (dharmaśāstropadeśa –

teaching of the treatises on dharma)

• 󱼥󱽂󱼡󱽂󱼬󱽂󱼫󱼴: 󱼥 ◌󱽂󱼡 󱽂◌󱽂󱼬 ◌󱽂󱼫 ◌󱼴 (mantryāgöng – great minister)

37

Test implementation

Implementation
required

• Brahmic scripts are complicated

• Serious problems have occurred in several
scripts

→Encoding should be tested before frozen

• See presentation “Integrating the
development of encoding, font, and
keyboard” at IUC 2018

39

Kawi implementation

• Font designed by Aditya Bayu Perdana,
engineered by Norbert Lindenberg

• Based on Apple Advanced Typography

• Tested in Pages, Safari, Firefox, Chrome and
right here in Keynote

• App with keyboard for iOS/iPadOS

40

Laguna copperplate
󱼱󱽂󱼮󱼱󱽂󱼡󱼶 󱼯󱼒󱼮󱼰󱼂󱼰󱼵󱼡󱼷 󱼡󱽘󱽒󱽒󱼾󱼾󱼮󱼱󱼴󱼓󱼪󱼴󱼱󱼣󱼶 󱼾󱼙󱽂󱼫󱼴󱼡󱼶 󱼰󱽉󱼗󱼡󱼸󱼢󱼂󱼢󱼶 󱼒󱼺 󱼰󱽂󱼠󱼦󱼒󱽂󱼰󱼾󱼱󱼴

󱼪󱼮󱼴󱼬󱼱󱼴󱼥󱼡󱼡󱽂󱼒󱼵󱼭󱼣󱼫󱼁󱼄󱼖󱽂󱼒󱼡󱼥󱽁󱼭󱼮󱼥󱽁󱼣󱽂󱼖󱼥󱽁󱼛󱼱󱼴󱼥󱼒󱽁󱼨󱼖󱼂󱼖󱼵󱼬󱼥󱽁󱼱󱼶 󱼨󱼸󱼒󱼃

󱼄󱼥󱼒󱽁󱼣󱼣 󱼁󱼲󱽂󱼮󱼥󱽂󱼥󱼪󱽂󱼮󱽂󱼬󱼥󱽁󱼣󱼶 󱼨󱼬󱼶 󱼮󱼬󱼣󱼴󱼥󱼮󱼶 󱼯󱼸󱼣󱽂󱼤󱼦󱼵󱼡󱽂󱼈󱼭󱼶 󱼃󱼱 󱼁󱼦󱼪󱽂󱼔󱼡󱽁󱼾󱼱󱼥󱼴󱼦󱼡󱼶 󱼣󱼶 󱼡󱼸󱼠󱽂󱼣 󱼸

󱼥󱽁󱼨󱼙󱼂󱼙󱼵󱼣 󱼁󱼲󱽂󱼮󱼥󱽂󱼥󱼴󱼫󱼒󱼡󱼸󱼲󱼴󱼥󱽁󱼾󱼾󱼦󱼭󱼃󱼙󱼫󱼾󱼣󱼮󱽉󱼣󱼶 󱽂󱼒󱽂󱼬󱼪󱼣 󱼁󱼲󱽂󱼮󱼥󱽂󱼥󱼪󱽂󱼮󱽂󱼬󱼥󱽁󱼣󱽂󱼖󱼥󱽁󱼣 󱼁󱼒󱼴󱼫

󱼱󱽂󱼢󱼯󱼸󱼣󱽂󱼤󱼴󱼥󱼸󱼣󱼶 󱼦󱼭 󱼂󱼦󱽂󱼦󱼱󱽁󱼲󱼸󱼡 󱼁󱼣󱼮󱼭󱼵󱼥󱽂󱼣󱼒󱼴󱽑󱼱󱼸󱽘󱼣󱼶 󱼲󱼣󱼦󱼥󱽁󱼣 󱼁󱼲󱽂󱼮󱼥󱽂󱼥󱼴󱼫󱼒󱼡󱼸󱼲󱼴󱼥󱽁󱼦󱼸

󱼭󱼶 󱼬󱼥󱽁󱼒󱼱󱼸󱼪󱼸󱼬󱼥󱽁󱽉󱼣 󱼁󱼲󱽂󱼮󱼥󱽂󱼥󱼴󱼫󱼒󱼡󱼸󱼲󱼴󱼥󱽁󱼾󱼾󱼦󱼭󱼃󱼨󱼙󱼂󱼙󱼵󱼣󱼶 󱼔󱼠󱼯󱼒󱽂󱼡󱼶 󱽉󱼣 󱼁󱼲󱽂󱼮󱼥󱽂󱼥󱼴󱼫󱼒󱼡󱼸

󱼲󱼴󱼥󱽁󱼨󱼶 󱼥󱽂󱼮󱼴󱼖󱼥󱽁󱼨󱼙󱼂󱼙󱼵󱼣󱼶 󱼨󱼶 󱽂󱼯󱽂󱼬󱼸󱼡󱼡󱼢󱼴󱼦󱼶 󱼱󱼴󱼣󱼴󱼥󱽂󱼣󱼱󱼴󱼥󱼒󱽁󱼒󱼦󱼬󱼴󱼮󱼶 󱼱󱽁󱼈󱼭󱼶 󱼃󱼱 󱼁󱼦󱼪󱽂󱼔󱼡󱽁󱼾󱼣

󱼮󱼡󱼮󱼙󱼂󱼙󱼵󱼣󱼶 󱼱 󱼁󱼦󱼪󱽂󱼔󱼡󱽁󱼪󱽂󱼞 󱼁󱼣󱼬󱼶 󱼩󱼒󱽂󱼡󱼶 󱼥󱽂󱼣󱼣󱼶 󱼦󱼲 󱼂󱼸󱼭󱼸󱼥󱽁󱼱 󱼁󱼦󱼪󱽂󱼔󱼡󱽁󱽉󱼫󱼪󱼒󱼴󱼛󱼱󱼴󱼣󱼴󱼛󱼄󱼥󱼒󱽁

󱼗󱼸󱼗󱼸󱼣 󱼁󱼲󱽂󱼮󱼥󱽂󱼥󱼪󱽂󱼮󱽂󱼬󱼥󱽁󱼯󱼸󱼣󱽂󱼤󱼫󱼒󱼦󱼬󱼴󱼮󱼶 󱼱󱽁󱼣󱼶 󱼲󱼸󱼡 󱼁󱼣󱼣 󱼁󱼲󱽂󱼮󱼥󱽂󱼥󱼪󱽂󱼮󱽂󱼬󱼥󱽁󱼣󱼶 󱼱 󱼁󱼦󱼪󱽂󱼔󱼡󱽁󱼾󱼣󱼮󱼡󱽉󱼆󱼥󱼶 󱽂󱼔󱽂󱼬 󱼁

󱼱󱽂󱼫󱼴󱼡󱽁 󱼱󱽂󱼫󱼴󱼦󱼥󱽂󱼡󱼴󱼲󱼦󱼯󱽂󱼗󱼴󱼡󱽁󱼣󱼶󱼁 󱼅󱼬󱼶 󱼒󱼪󱼸 󱼣󱽂󱼫󱼥󱽁󱼅󱼣󱽂󱼔󱽂󱼬 󱼁󱼈󱼬 󱼁󱼨󱼬󱼸󱼙󱼬󱼮󱽂󱼭󱼸 󱼁󱼭󱼦󱽂󱼦󱼱󱽁󱼲󱼸󱼡 󱼁󱼣󱼣 󱼁󱼲󱽂

41

Keyboard

42

Keyboard

43

Summary

No automated process

• Scripts have different features

• Repha vs. final -r

• Script users have different requirements

• Scholars vs. online communities

• Looking at reasons for Kawi choices can help
encode future scripts

45

Advice

• Take advantage of changes in technical
environment

• Standard rendering with default cluster model:
Universal Shaping Engine

• Flexible input technology, e.g. Keyman

46

Advice

• Avoid mistakes made in encoding 1..63

• ISCII/Devanagari influence

• Magic characters

• Custom encoding of repha

• Define and validate cluster structure

• Create test implementation

47

References

• Aditya Bayu Perdana, Ilham Nurwansah:
Proposal to encode Kawi. L2/20-284R 
unicode.org/L2/L2020/20284r-kawi.pdf

• Norbert Lindenberg: Repha representation
for Kawi. L2/20-283 
unicode.org/L2/L2020/20283-kawi-repha.pdf

• Lindenberg Software: The Aksara Kawi app 
lindenbergsoftware.com/en/keyboards/kawi/support.html

48

Fonts used

• Tantular Kawi

Design by Aditya Bayu Perdana. Engineering by Norbert Lindenberg.

• Myriad Pro

Design by Robert Slimbach and Carol Twombly at Adobe Systems Inc.

49

