Learnings from encoding Kawi

Norbert Lindenberg

Kawi proposal authors

Aditya Bayu Perdana अင်စျာတပျီငွိहျ

Ilham Nurwansah ព្រម្ពស្វិទ្ធិក្សារា

Agenda

- Kawi
- Encoding characters
- Encoding clusters
- Test implementation with font and keyboard
- Summary

Kawi

- Historic script of Java, Sumatra, Malay peninsula, Bali, Philippines
- Used to write Old Javanese, Sanskrit, Old Malay, Old Balinese, Old Sundanese
- Used 8th to 16th century
- Derived from Brahmi via Pallava

Kawi

Kawi: One script?

		TVIT32	OD 13695	OD 3871	OD 741a	MSS Jav 106	KERN E29	various
КА	m	X	500.5	h	68	ran	em.	

- Character shapes vary widely over history
- But:
 - No significant structural changes
 - Shapes can be handled by fonts
- →Encode as single script

Kawi as Brahmic script

- Consonants with inherent vowel
- Dependent vowel signs override inherent vowel; attach on any side of consonant
- Virama sign suppresses inherent vowel
- Conjunct forms of consonants suppress inherent vowel of base consonant
- Repha sign for cluster-initial *r*-

Kawi as Brahmic script

- Kawi is 64th Brahmic script in Unicode
- Could there be an automated process for Unicoding Brahmic scripts?
- Review of key decisions in encoding Kawi, and see what can be learned from them

Encoding characters

User-level characters

- Significant research by Bayu, Ilham, and collaborators
- Over 50 inscriptions and manuscripts evaluated
- Documentation of characters and their shapes

User-level characters

- Sumberwatu gold plate (Yogyakarta)
- Contains all 33 Kawi consonant letters
 - Some previously known only in subscript form

Virama

- Before computers: Visible mark to suppress inherent vowel (Kawi:))
- Unicode: Also used to form conjuncts (ॣ, ೖ, ெ)
- Three kinds of viramas
 - Visible mark Pure_Killer
 - Invisible conjunct former Invisible_Stacker
 - Shape-shifting depending on context Virama

Virama

- Shape-shifter: Font is in control
 - Useful in scripts with optional conjunct ligatures (Devanagari)
 - Users can use ZWNJ and (sometimes) ZWJ to influence shape
 - But: ZWNJ, ZWJ are hard to work with

Virama

- Visible mark + invisible conjunct former
 - User is in control (important for scholars!)
 - ZWJ and ZWNJ not needed
 - Sufficient for script with fixed set of conjunct forms
- →Chosen for Kawi: ①, ਼

Repha

- Mark representing cluster-initial *r-*, often above-base Kawi: ♂
- Unicode has 14 ways to represent repha
 - Many use ZWJ to distinguish repha from nominal form of initial r- or from eyelash ra
 - Most encode repha as first part of cluster, some don't

Repha in Kawi

- Cluster-initial *r* usually shows as repha ♂, but occasionally as nominal *ra* glyph ⊤
 - → Encode repha separately to avoid need for ZWJ
- Repha sign usually means repha; rarely final -r
 - Opposite of Balinese, Javanese, where cognates of Kawi repha usually mean final -r, rarely repha
 - → Encode repha before base consonant

Multi-part characters

- Kawi has several independent and dependent vowels that visually consist of multiple parts
 - 3₹1 letter euu ↔ 3₹ letter a, [®] sign eu, 1 sign aa
 - េា sign o ↔ េ sign e, ា sign aa

Multi-part characters

- Unicode has 3 ways to handle multi-part characters
 - Encode multi-part characters atomically, with canonical decomposition – e.g. Balinese
 - Encode multi-part characters atomically; prohibit representation as sequence – e.g. Devanagari ("do not use"); Khmer (max. 1 vowel)
 - Do not encode multi-part characters; use sequence of components instead – e.g. Javanese

Multi-part characters in Kawi

- Components of multi-part characters in Kawi always also are vowels by themselves
- Duplicate encoding with canonical decomposition has no advantage
- "Do not use" lists or maximum number of vowels complicate implementation
- → Encode as sequences of components

Multi-part characters in Kawi

 Some multi-part characters have visually distinct variants that aren't multi-part

• ຫຼາ letter ii ↔ ຫຼ letter i, າ sign aa

• (g) letter ii ↔ p letter i, ា sign aa

→Encode visually distinct variants separately

Encoding clusters

Clusters → logical order

- Clusters in Brahmic scripts are twodimensional; code point sequences are linear
- Multiple encodings for strings that user can't distinguish lead to problems in search and to spoofing
- Need to define correct code point sequences

Logical order

- Order in which text is stored in memory
- Need not match typing order keyboards can reorder to match user expectations
- May be based on visual order or phonetic order

- Thai, Lao + 2; most non-Brahmic scripts
- Encode spacing characters in writing direction
- Encode interacting nonspacing marks from base outwards
- Equivalence between sequences of noninteracting nonspacing marks
- "Interacting" ↔ same combining class

- Problems for Brahmic scripts
 - Combining class can't be defined for marks encoded as virama-consonant sequences
 - Combining class for marks can't be corrected when minority languages use them differently or mistakes were made

- Problems for Brahmic scripts
 - Spacing/nonspacing contextual forms have to be encoded separately
 - Characters don't appear in order needed for sorting

- Most Brahmic scripts
- Encoding order is primarily phonetic order; secondarily position or other criteria

Problems:

- Incompatible with equivalences defined through combining classes → set CCC=0 (except virama)
- Some characters aren't phonetic → need to resolve where they fit in
- Unicode doesn't do that → compatibility issues

Universal Shaping Engine

- OpenType shaping engine for the rest of us
- Defines generic cluster model for Brahmic scripts based on Unicode data:
 - General category
 - Indic syllabic category
 - Indic positional category

Kawi cluster model

- Multiple positions for repha considered because of use as final -r
- →Encode at start of cluster, even for final -r
- After defining Unicode data for Kawi, derived USE cluster model worked fine
- → Kawi adopts cluster model provided by USE

```
Consonant_Preceding_Repha?
(Consonant | Vowel_Independent | Number |
Consonant Placeholder)
(Invisible_Stacker (Consonant | Vowel_Independent |
Number))*
Vowel_Dependent-Left* Vowel_Dependent-Top*
Vowel_Dependent-Bottom* (Vowel_Dependent-Right)
| Pure_Killer-Right)*
Bindu-Top*
Visarga-Right*
```

```
[ ្ត ]?
[ ៣ ៣ ព
```

[:]*

Kawi cluster examples

• ເບາ: ມ (ເວ າ (ni*sro*ma – hairless)

- ត្រ្យាៈ ក ្ហ ្រ ្វា ា (ma*ntryā*göng great minister)

Test implementation

Implementation required

- Brahmic scripts are complicated
- Serious problems have occurred in several scripts
- →Encoding should be tested before frozen
- See presentation "Integrating the development of encoding, font, and keyboard" at IUC 2018

Kawi implementation

- Font designed by Aditya Bayu Perdana, engineered by Norbert Lindenberg
- Based on Apple Advanced Typography
- Tested in Pages, Safari, Firefox, Chrome and right here in Keynote
- App with keyboard for iOS/iPadOS

Laguna copperplate

မဓာၤဂၢမစ္မတ္တိုကင္တတဲ့ အင္တာစခါတင္တြင္ပါကာပမယ္တိုက္တိုက္ခုက္ခတ္တြင္ပါတယ္။ ၂၀၂၀ ရှင်ကျော်။ ၁၅ ရှင်များ မှာ ၁၅ ရှင်များ ၁၅ ရှင်မှာ ၁၅ ရှင်မှ လူးဗွါ။ကိုရီးဗွာ့င်ကိုင်းကျာရဲကာမွဲလောတ္မွာဇွာတွင်မှာမျာရဲ့ ကာမြဲထိုင်းထွဲခဲ့ရရှိငွှင့်ပြီစာစုစာဂျွားငာ မိုားမေတြကေး မှုတွင်းကွဲကို မြဲစာစုနေ စောဝန္တုင္လက္ပ်က္မေတြ နိုင္ရွိေနရိုင္တင္တက္မွတ္ပတ္ပတ္ပတ္ပတ္ပတ္ပတ္သက္သတ္ပတ္ပတ္သက္သတ္ပတ္ပတ္သက္သတ္ပတ္သက္သတ္ပတ္သတ္ ဂါး၍ ဂါးဂဗီးကဂမီး၍ဇ္မွဲ့ဆျွယရိ ငါမွာအငပြင်း တွင်ဖော်ပကၤဤပါတဲ့ငော့လိ

And Bluce words digital which die constitution of the same of the blue and blue and

Keyboard

Keyboard

Summary

No automated process

- Scripts have different features
 - Repha vs. final -r
- Script users have different requirements
 - Scholars vs. online communities
- Looking at reasons for Kawi choices can help encode future scripts

Advice

- Take advantage of changes in technical environment
 - Standard rendering with default cluster model: Universal Shaping Engine
 - Flexible input technology, e.g. Keyman

Advice

- Avoid mistakes made in encoding 1..63
 - ISCII/Devanagari influence
 - Magic characters
 - Custom encoding of repha
- Define and validate cluster structure
- Create test implementation

References

- Aditya Bayu Perdana, Ilham Nurwansah: Proposal to encode Kawi. L2/20-284R unicode.org/L2/L2020/20284r-kawi.pdf
- Norbert Lindenberg: Repha representation for Kawi. L2/20-283 unicode.org/L2/L2020/20283-kawi-repha.pdf
- Lindenberg Software: The Aksara Kawi app lindenbergsoftware.com/en/keyboards/kawi/support.html

Fonts used

Tantular Kawi

Design by Aditya Bayu Perdana. Engineering by Norbert Lindenberg.

Myriad Pro

Design by Robert Slimbach and Carol Twombly at Adobe Systems Inc.